In this article, we describe the gidm command for fitting generalized inflated discrete models that deal with multiple inflated values in a distribution. Based on the work of Cai, Xia, and Zhou (Forthcoming, Sociological Methods & Research: Generalized inflated discrete models: A strategy to work with multimodal discrete distributions), generalized inflated discrete models are fit via maximum likelihood estimation. Specifically, the gidm command fits Poisson, negative binomial, multinomial, and ordered outcomes with more than one inflated value. We illustrate this command through examples for count and categorical outcomes.